Flytende gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, jo nærmere de bevegelige gjennomsnittene er de faktiske datapunktene. En prognoseberegningseksempel A.1 Prognoseberegningsmetoder Tolv metoder for beregning av prognoser er tilgjengelige. De fleste av disse metodene sørger for begrenset brukerkontroll. For eksempel kan vekten plassert på nyere historiske data eller datoperioden for historiske data som brukes i beregningene, spesifiseres. Følgende eksempler viser beregningsmetoden for hver av de tilgjengelige prognosemetoder, gitt et identisk sett med historiske data. Følgende eksempler bruker de samme salgsdataene fra 2004 og 2005 for å produsere en salgsprognose fra 2006. I tillegg til prognoseberegningen inneholder hvert eksempel en simulert 2005-prognose for en tre måneders holdoutperiode (behandlingsalternativ 19 3) som deretter brukes til prosent av nøyaktighet og gjennomsnittlige absoluttavviksberegninger (faktisk salg sammenlignet med simulert prognose). A.2-prognoser for prestasjonsvurderingskriterier Avhengig av valg av behandlingsalternativer og trender og mønstre som finnes i salgsdata, vil enkelte prognosemetoder utføre bedre enn andre for et gitt historisk datasett. En prognosemetode som passer for ett produkt, kan ikke være aktuelt for et annet produkt. Det er heller ikke sannsynlig at en prognosemetode som gir gode resultater på et stadie av produktets livssyklus, forblir passende gjennom hele livssyklusen. Du kan velge mellom to metoder for å evaluere den nåværende ytelsen til prognosemetodene. Disse er gjennomsnittlig absolutt avvik (MAD) og prosentandel av nøyaktighet (POA). Begge disse resultatevalueringsmetodene krever historiske salgsdata for en spesifisert tidsperiode. Denne tidsperioden kalles en holdoutperiode eller perioder som passer best (PBF). Dataene i denne perioden brukes som grunnlag for å anbefale hvilke av prognosemetoder som skal brukes til å lage neste prognoseprojeksjon. Denne anbefalingen er spesifikk for hvert produkt, og kan endres fra en prognose generasjon til den neste. De to prognosevalueringsmetodene er demonstrert på sidene som følger eksemplene på de tolv prognosemetodene. A.3 Metode 1 - Spesifisert prosent over siste år Denne metoden multipliserer salgsdata fra forrige år med en brukerdefinert faktor for eksempel 1,10 for en 10 økning, eller 0,97 for en 3 reduksjon. Nødvendig salgshistorie: Ett år for beregning av prognosen pluss brukerens spesifiserte antall tidsperioder for vurdering av prognoseytelse (behandlingsalternativ 19). A.4.1 Varselberegning Område for salgshistorie som skal benyttes ved beregning av vekstfaktor (behandlingsalternativ 2a) 3 i dette eksemplet. Sum de tre siste månedene 2005: 114 119 137 370 Sum samme tre måneder for året før: 123 139 133 395 Den beregnede faktoren 370395 0,9367 Beregn prognosene: januar 2005 salg 128 0,9367 119,8036 eller ca 120 februar 2005 salg 117 0,9367 109,5939 eller ca 110 mars 2005 salg 115 0,9367 107,7205 eller ca 108 A.4.2 Simulert prognoseberegning Summen av de tre månedene 2005 før utholdelsesperioden (juli, august, september): 129 140 131 400 Sum samme tre måneder for forrige år: 141 128 118 387 Beregnet faktor 400387 1.033591731 Beregn simulert prognose: oktober 2004 salg 123 1.033591731 127.13178 november 2004 salg 139 1.033591731 143.66925 desember 2004 salg 133 1.033591731 137.4677 A.4.3 Prosent av nøyaktighetsberegning POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Middel Absolutt Avviksberegning MAD (127.13178 - 114 143.66925 - 119 137.4677-137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metode 3 - Året i år Dette metoden kopierer salgsdata fra foregående år til neste år. Nødvendig salgshistorie: Ett år for beregning av prognosen pluss antall tidsperioder som er angitt for å vurdere prognoseytelsen (behandlingsalternativ 19). A.6.1 Varselberegning Antall perioder som skal inkluderes i gjennomsnittet (behandlingsalternativ 4a) 3 i dette eksemplet For hver måned av prognosen, gjennomsnitt de tre foregående månedene. Januar prognose: 114 119 137 370, 370 3 123 333 eller 123 februar prognose: 119 137 123 379, 379 3 126 333 eller 126 Mars prognose: 137 123 126 379, 386 3 128 677 eller 129 A.6.2 Simulert prognoseberegning Oktober 2005 salg 140 131) 3 133 33333 November 2005 salg (140 131 114) 3 128 33333 Desember 2005 salg (131 114 119) 3 121 33333 A.6.3 Prosent av nøyaktighetsberegning POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Middel Absolutt Avviksberegning MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metode 5 - Lineær tilnærming Lineær tilnærming beregner en trend basert på to salgshistorikk datapunkter. Disse to punktene definerer en rett trendlinje som projiseres inn i fremtiden. Bruk denne metoden med forsiktighet, da langdistanseprognosene utløses av små endringer på bare to datapunkter. Nødvendig salgshistorie: Antall perioder som skal inkluderes i regresjon (behandlingsalternativ 5a), pluss 1 pluss antall tidsperioder for evaluering av prognoseprestasjon (behandlingsalternativ 19). A.8.1 Varselberegning Antall perioder som skal inkluderes i regresjon (behandlingsalternativ 6a) 3 i dette eksemplet For hver måned av prognosen legger du til økningen eller reduksjonen i de angitte periodene før utholdelsesperioden forrige periode. Gjennomsnitt for de foregående tre månedene (114 119 137) 3 123.3333 Sammendrag av de foregående tre månedene med vekt (114 1) (119 2) (137 3) 763 Forskjellen mellom verdiene 763 - 123.3333 (1 2 3) 23 Forhold 12 22 32) - 2 3 14 - 12 2 Verdi1 DifferenceRatio 232 11,5 Verdi2 Gjennomsnitt - verdi1-forhold 123.3333 - 11.5 2 100.3333 Prognose (1 n) verdi1 verdi2 4 11.5 100.3333 146.333 eller 146 Varsel 5 11.5 100.3333 157.8333 eller 158 Varsel 6 11.5 100.3333 169.3333 eller 169 A.8.2 Simulert prognoseberegning oktober 2004 Salg: Gjennomsnitt for de foregående tre månedene (129 140 131) 3 133 33333 Sammendrag av de foregående tre månedene med vekt (129 1) (140 2) (131 3) 802 Forskjellen mellom verdier 802 - 133.3333 (1 2 3) 2 Forhold (12 22 32) - 2 3 14 - 12 2 Verdi1 DifferenceRatio 22 1 Verdi2 Gjennomsnittlig verdi1-verdi 133.3333 - 1 2 131.3333 Prognose (1 n) verdi1 verdi2 4 1 131.3333 135.3333 November 2004 salg Gjennomsnitt for de foregående tre månedene (140 131 114) 3 128 3333 Sammendrag av de foregående tre månedene med vekt (140 1) (131 2) (114 3) 744 Forskjell mellom verdiene 744 - 128 3333 (1 2 3) -25,9999 Verdi1 DifferenceRatio -25.99992 -12.9999 Verdi2 Gjennomsnittlig verdi1-forhold 128.3333 - (-12.9999) 2 154.3333 Varsel 4 -12.9999 154.3333 102.3333 Desember 2004 salg Gjennomsnitt for de foregående tre månedene (131 114 119) 3 121.3333 Sammendrag av de foregående tre månedene med vekt (vekt) 131 1) (114 2) (119 3) 716 Forskjellen mellom verdiene 716 - 121.3333 (1 2 3) -11.9999 Verdi1 DifferenceRatio -11.99992 -5.9999 Verdi2 Gjennomsnittlig verdi1-verdi 121.3333 - (-5.9999) 2 133.3333 Værvarsel 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Prosent av nøyaktighetsberegning POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Gjennomsnittlig Absolutt Avviksberegning MAD (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Metode 7 - secon d Gradert tilnærming Linjær regresjon bestemmer verdier for a og b i prognoseformelen Y a bX med sikte på å tilpasse en rett linje til salgshistorikkdataene. Second Degree Approximation er lik. Denne metoden bestemmer imidlertid verdiene for a, b og c i prognoseformelen Y a bX cX2 med sikte på å tilpasse en kurve til salgshistorikkdataene. Denne metoden kan være nyttig når et produkt er i overgangen mellom stadier av en livssyklus. For eksempel, når et nytt produkt flytter fra introduksjon til vekststadier, kan salgstrenden akselerere. På grunn av den andre ordreperioden kan prognosen raskt nærme seg uendelig eller slippe til null (avhengig av om koeffisient c er positiv eller negativ). Derfor er denne metoden bare nyttig på kort sikt. Prognose spesifikasjoner: Formlene finner a, b og c for å passe en kurve til nøyaktig tre punkter. Du spesifiserer n i behandlingsalternativet 7a, hvor mange tidsperioder dataene skal samles inn i hver av de tre punktene. I dette eksemplet n 3. Derfor blir faktiske salgsdata for april til juni kombinert med første punkt, Q1. Juli til september legges sammen for å skape Q2, og oktober til desember sum til Q3. Kurven vil bli montert på de tre verdiene Q1, Q2 og Q3. Nødvendig salgshistorie: 3 n perioder for beregning av prognosen pluss antall tidsperioder som kreves for å vurdere prognoseytelsen (PBF). Antall perioder som skal inkluderes (behandlingsalternativ 7a) 3 i dette eksemplet Bruk de forrige (3 n) månedene i tre måneders blokker: Q1 (apr - juni) 125 122 137 384 Q2 (jul - september) 129 140 131 400 Q3 Okt - des) 114 119 137 370 Det neste trinnet omfatter å beregne de tre koeffisientene a, b og c som skal brukes i prognoseformelen Y a bX cX2 (1) Q1 en bX cX2 (hvor X1) abc (2) Q2 en bX cX2 (hvor X 2) en 2b 4c (3) Q3 en bX cX2 (hvor X 3) en 3b 9c Løs de tre ligningene samtidig for å finne b, a og c: Trekk likning (1) fra ligning (2) og løs for b (2) - (1) Q2 - Q1 b 3c Erstatt denne ligningen for b til ligning (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Til slutt erstatte disse ligningene for a og b til ligning (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1c (Q3 - Q2) (Q1 - Q2) 2 Den andre gradstilnærmelsesmetoden beregner a, b og c som følger: en Q3 - 3 (Q2 - Q1) 370-3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370-400) (384-400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3-23) 85 Y a bX cX2 322 85X (-23) X2 Januar til marsvarsel (X4): (322 340 - 368) 3 2943 98 per periode april til juni prognose (X5): (322 425 - 575) 3 57 333 eller 57 per periode Juli til september prognose (X6): (322 510 - 828) 3 1,33 eller 1 per periode oktober til desember (X7) 595 - 11273 -70 A.9.2 Simulert prognoseberegning oktober, november og desember 2004 salg: Q1 (jan - mar) 360 Q2 (apr - juni) 384 Q3 (jul - september) 400 til 400-3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Prosent av nøyaktighetsberegning POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Gjennomsnittlig Absolutt Avviksberegning MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Metode 8 - Fleksibel metode Den fleksible metoden (Prosent over en måned før) 1, prosent over fjoråret. Begge metodene multipliserer salgsdata fra en tidligere tidsperiode av en brukerdefinert faktor, og deretter prosjektet det resultatet inn i fremtiden. I prosentandelen over siste årsmetoden er projeksjonen basert på data fra samme tidsperiode året før. Den fleksible metoden legger til rette for å angi en annen tidsperiode enn samme periode i fjor som skal brukes som grunnlag for beregningene. Multiplikasjonsfaktor. For eksempel angi 1,15 i behandlingsalternativet 8b for å øke tidligere salgshistorikkdata med 15. Baseperiode. For eksempel vil n 3 føre til at den første prognosen baseres på salgsdata i oktober 2005. Minste salgshistorie: Brukeren spesifiserte antall perioder tilbake til basisperioden, pluss antall tidsperioder som kreves for å evaluere prognoseprestansen ( PBF). A.10.4 Gjennomsnittlig Absolutt Avviksberegning MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metode 9 - Vektet Flytende Gjennomsnitt Vektet Flytende Gjennomsnittlig (WMA) - metode ligner Metode 4, Flytende Gjennomsnitt (MA). Imidlertid kan med vektet flytende gjennomsnitt gi ulik vekt til de historiske dataene. Metoden beregner et veid gjennomsnitt av den siste salgshistorikken for å komme frem til en projeksjon på kort sikt. Nyere data blir vanligvis tildelt større vekt enn eldre data, så dette gjør WMA mer lydhør overfor endringer i salgsnivået. Imidlertid oppstår prognoseforstyrrelser og systematiske feil når produktsalgshistorikken viser sterk trend eller sesongmessige mønstre. Denne metoden fungerer bedre for korte prognoser for modne produkter enn for produkter i vekst - eller forløpsfasen av livssyklusen. n Antall perioder med salgshistorie som skal brukes i prognoseberegningen. For eksempel angi n 3 i behandlingsalternativet 9a for å bruke de siste tre periodene som grunnlag for projeksjonen inn i neste tidsperiode. En stor verdi for n (som 12) krever mer salgshistorikk. Det resulterer i en stabil prognose, men vil være sakte for å gjenkjenne endringer i salgsnivået. På den annen side vil en liten verdi for n (som 3) reagere raskere på endringer i salgsnivået, men prognosen kan variere så mye at produksjonen ikke kan svare på variasjonene. Vekten tilordnet hver av de historiske datoperiodene. De tildelte vekter må total til 1,00. For eksempel, når n 3, tilordner vekter på 0,6, 0,3 og 0,1, med de nyeste dataene som mottar den største vekten. Minimumskrav til salgshistorie: n pluss antall tidsperioder som kreves for å evaluere prognoseytelsen (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Metode 10 - Linjær utjevning Denne metoden ligner metode 9, vektet flytende gjennomsnitt (WMA). Imidlertid, i stedet for å tilfeldigvis gi vekt til historiske data, brukes en formel til å tildele vekter som avtar lineært og summen til 1,00. Metoden beregner deretter et veid gjennomsnitt av den siste salgshistorikken for å komme frem til en projeksjon på kort sikt. Som det gjelder for alle lineære bevegelige gjennomsnittlige prognoseteknikker, oppstår prognoseforstyrrelser og systematiske feil når produktsalgshistorikken viser sterk trend eller sesongmessige mønstre. Denne metoden fungerer bedre for korte prognoser for modne produkter enn for produkter i vekst - eller forløpsfasen av livssyklusen. n Antall perioder med salgshistorie som skal brukes i prognoseberegningen. Dette er angitt i behandlingsalternativet 10a. For eksempel angi n 3 i behandlingsalternativet 10b for å bruke de siste tre periodene som grunnlag for projeksjonen i neste tidsperiode. Systemet vil automatisk tildele vektene til de historiske dataene som avtar lineært og summen til 1,00. For eksempel, når n 3, vil systemet tildele vekter på 0,5, 0,3333 og 0,1, med de nyeste dataene som mottar den største vekten. Minimumskrav til salgshistorie: n pluss antall tidsperioder som kreves for å evaluere prognoseytelsen (PBF). A.12.1 Varselberegning Antall perioder som skal inkluderes i utjevnings gjennomsnitt (prosesseringsalternativ 10a) 3 i dette eksemplet Forhold for en periode før 3 (n2 n) 2 3 (32 3) 2 36 0,5 Forhold for to perioder før 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Forhold for tre perioder før 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Januar prognose: 137 0,5 119 13 114 16 127,16 eller 127 februar prognose: 127 0,5 137 13 119 16 129 Mars prognose: 129 0,5 127 13 137 16 129 666 eller 130 A.12.2 Simulert prognoseberegning oktober 2004 salg 129 16 140 26 131 36 133 66666 november 2004 salg 140 16 131 26 114 36 124 desember 2004 salg 131 16 114 26 119 36 119.3333 A.12.3 Prosent av nøyaktighetsberegning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Gjennomsnittlig Absolutt Avviksberegning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metode 11 - Eksponensiell utjevning Denne metoden ligner metode 10, lineær utjevning. Ved lineær utjevning tilordner systemet vekten til de historiske dataene som avtar lineært. Ved eksponensiell utjevning tilordner systemet vekt som eksponentielt forfall. Eksponensiell utjevningsprognosering er: Prognose a (Tidligere faktisk salg) (1-a) Tidligere prognose Prognosen er et veid gjennomsnitt av det faktiske salget fra forrige periode og prognosen fra forrige periode. a er vekten på det faktiske salget for den foregående perioden. (1-a) er vekten på prognosen for foregående periode. Gyldige verdier for et område fra 0 til 1, og faller vanligvis mellom 0,1 og 0,4. Summen av vekter er 1,00. a (1 - a) 1 Du bør tilordne en verdi for utjevningskonstanten, a. Hvis du ikke tilordner verdier for utjevningskonstanten, beregner systemet en antatt verdi basert på antall perioder med salgshistorikk som er angitt i behandlingsalternativet 11a. en utjevningskonstanten som brukes til å beregne det glatte gjennomsnittet for det generelle nivået eller størrelsen på salget. Gyldige verdier for et område fra 0 til 1. n rekke salgshistorikkdata som skal inkluderes i beregningene. Vanligvis er et år med salgshistorikkdata tilstrekkelig til å anslå det generelle salgsnivået. For dette eksempelet ble en liten verdi for n (n 3) valgt for å redusere manuelle beregninger som kreves for å verifisere resultatene. Eksponensiell utjevning kan generere en prognose basert på så lite som et historisk datapunkt. Minimumskrav til salgshistorie: n pluss antall tidsperioder som kreves for å evaluere prognoseytelsen (PBF). A.13.1 Varselberegning Antall perioder som skal inkluderes i utjevnings gjennomsnitt (prosesseringsalternativ 11a) 3 og alfafaktor (behandlingsalternativ 11b) tom i dette eksemplet en faktor for eldste salgsdata 2 (11) eller 1 når alfa er spesifisert en faktor for 2. eldste salgsinformasjon 2 (12) eller alfa når alfa er spesifisert en faktor for 3. eldste salgsdata 2 (13), eller alfa når alfa er spesifisert en faktor for de siste salgsdataene 2 (1n) , eller alfa når alfa er spesifisert November Sm. Nr. a (oktober faktisk) (1 - a) oktober sm. Nr. 1 114 0 0 114 desember Sm. Nr. a (november faktisk) (1 - a) november sm. Nr. 23 119 13 114 117.3333 januar Værvarsel a (desember faktisk) (1 - a) desember sm. Nr. 24 137 24 117.3333 127.16665 eller 127 februar Værvarsel januar Værvarsel 127 Mars Forecast januar Værvarsel 127 A.13.2 Simulert prognoseberegning juli 2004 Sm. Nr. 22 129 129 august Sm. Nr. 23 140 13 129 136.3333 september sm. Nr. 24 131 24 136.3333 133.6666 Oktober, 2004 salg Sep Sm. Nr. 133.6666 august 2004 Sm. Nr. 22 140 140 september Sm. Nr. 23 131 13 140 134 oktober Sm. Nr. 24 114 24 134 124 november, 2004 salg sep sm. Nr. 124 september 2004 Sm. Nr. 22 131 131 Sm. Nr. 23 114 13 131 119.6666 November Sm. Nr. 24 119 24 119.6666 119.3333 Desember 2004 salg Sep Sm. Nr. 119.3333 A.13.3 Prosent av nøyaktighetsberegning POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Gjennomsnittlig Absolutt Avviksberegning MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metode 12 - Eksponensiell utjevning med trend og sesongmessighet Denne metoden ligner metode 11, eksponentiell utjevning ved at et glatt gjennomsnitt beregnes. Metode 12 inneholder imidlertid også en term i prognosekvasjonen for å beregne en glatt trend. Prognosen består av en glatt gjennomsnitt som er justert for en lineær trend. Når spesifisert i behandlingsalternativet, er prognosen også justert for sesongmessig. en utjevningskonstanten som brukes til å beregne det glatte gjennomsnittet for det generelle nivået eller størrelsen på salget. Gyldige verdier for alfaområdet fra 0 til 1. b utjevningskonstanten som brukes til å beregne det glatte gjennomsnittet for trendkomponenten i prognosen. Gyldige verdier for beta rekkevidde fra 0 til 1. Om en sesongbasert indeks er brukt på prognosen a og b er uavhengig av hverandre. De trenger ikke å legge til 1,0. Minst nødvendig salgshistorie: to år pluss antall tidsperioder som kreves for å evaluere prognoseytelsen (PBF). Metode 12 bruker to eksponensielle utjevningsligninger og ett enkelt gjennomsnitt for å beregne et glatt gjennomsnitt, en jevn trend og en enkel gjennomsnittlig sesongfaktor. A.14.1 Varselberegning A) Et eksponentielt glatt gjennomsnitt MAD (122,81 - 114 133,14 - 119 135,33 - 137) 3 8.2 A.15 Evaluering av prognosene Du kan velge prognosemetoder for å generere så mange som tolv prognoser for hvert produkt. Hver prognosemetode vil trolig skape en litt annen projeksjon. Når det regnes med tusenvis av produkter, er det upraktisk å ta en subjektiv beslutning om hvilke av prognosene som skal brukes i dine planer for hver av produktene. Systemet evaluerer automatisk ytelsen for hvert av prognosemetoder du velger, og for hvert av produktene prognose. Du kan velge mellom to ytelseskriterier, gjennomsnittlig avvik (MAD) og prosentandel av nøyaktighet (POA). MAD er et mål på prognosefeil. POA er et mål på prognoseforspenning. Begge disse ytelsesevalueringsteknikkene krever faktiske salgshistorikkdata for en brukerdefinert tidsperiode. Denne perioden med nyere historie kalles en holdout periode eller perioder som passer best (PBF). For å måle resultatene av en prognosemetode, bruk prognosemålingene for å simulere en prognose for den historiske holdoutperioden. Det vil vanligvis være forskjeller mellom faktiske salgsdata og den simulerte prognosen for holdoutperioden. Når flere prognosemetoder er valgt, oppstår denne samme prosessen for hver metode. Flere prognoser beregnes for holdoutperioden, og sammenlignet med den kjente salgshistorikken for samme tidsperiode. Prognosemetoden som gir den beste kampen (best egnet) mellom prognosen og det faktiske salget i holdoutperioden, anbefales for bruk i dine planer. Denne anbefalingen er spesifikk for hvert produkt, og kan endres fra en prognose generasjon til den neste. A.16 Mean Absolute Deviation (MAD) MAD er gjennomsnittet (eller gjennomsnittet) av absoluttverdiene (eller størrelsen) av avvikene (eller feilene) mellom faktiske og prognose data. MAD er et mål på den gjennomsnittlige størrelsen på feilene som kan forventes, gitt en prognosemetode og datahistorie. Fordi absoluttverdier brukes i beregningen, avbryter ikke positive feil ut negative feil. Når man sammenligner flere prognosemetoder, har den med den minste MAD vist seg å være den mest pålitelige for det aktuelle produktet i den perioden. Når prognosen er upartisk og feil distribueres normalt, er det et enkelt matematisk forhold mellom MAD og to andre vanlige målefordeler, standardavvik og gjennomsnittlig kvadratfeil: A.16.1 Prosent av nøyaktighet (POA) Prosent av nøyaktighet (POA) er et mål på prognoseforstyrrelser. Når prognosene er konsekvent for høye, samles varebeholdninger og lagerkostnadene øker. Når prognosene er konsekvent to lave, forbruker varebeholdningen og kundeservicen avtar. En prognose som er 10 enheter for lav, da 8 enheter for høye, deretter 2 enheter for høye, ville være en objektiv prognose. Den positive feilen på 10 er kansellert av negative feil på 8 og 2. Feil Aktuell - Prognose Når et produkt kan lagres i lagerbeholdning, og når prognosen er objektiv, kan en liten mengde sikkerhetslager brukes til å buffere feilene. I denne situasjonen er det ikke så viktig å eliminere prognosefeil som det er å generere objektive prognoser. Men i tjenesteytende næringer vil ovennevnte situasjon bli sett på som tre feil. Tjenesten ville være underbemannet i den første perioden, deretter overbemannet for de neste to perioder. I tjenester er størrelsen på prognosefeil vanligvis viktigere enn det som er prognostisk forspenning. Summen over holdoutperioden tillater positive feil å avbryte negative feil. Når summen av det faktiske salget overstiger summen av prognosen, er forholdet større enn 100. Det er selvfølgelig umulig å være mer enn 100 nøyaktige. Når en prognose er objektiv, vil POA-forholdet være 100. Derfor er det mer ønskelig å være 95 nøyaktig enn å være 110 nøyaktig. POA-kriteriet velger prognosemetoden som har et POA-forhold nærmest 100. Skripting på denne siden forbedrer innholdsnavigasjon, men endrer ikke innholdet på noen måte. Gjennomsnittlig gjennomsnitt: Hva er de Blant de mest populære tekniske indikatorene er glidende gjennomsnitt pleide å måle retningen av den nåværende trenden. Hver type bevegelige gjennomsnitt (vanligvis skrevet i denne opplæringen som MA) er et matematisk resultat som beregnes ved å beregne et antall tidligere datapunkter. Når det er bestemt, blir det resulterende gjennomsnittet plottet på et diagram for å tillate handelsmenn å se på glatt data, i stedet for å fokusere på de daglige prisfluktuasjonene som er iboende i alle finansmarkeder. Den enkleste formen for et bevegelige gjennomsnitt, riktig kjent som et enkelt glidende gjennomsnitt (SMA), beregnes ved å ta det aritmetiske gjennomsnittet av et gitt sett av verdier. For eksempel, for å beregne et grunnleggende 10-dagers glidende gjennomsnitt vil du legge til sluttkursene fra de siste 10 dagene, og deretter dele resultatet med 10. I figur 1 er summen av prisene for de siste 10 dagene (110) dividert med antall dager (10) for å komme fram til 10-dagers gjennomsnittet. Hvis en forhandler ønsker å se et 50-dagers gjennomsnitt i stedet, vil samme type beregning bli gjort, men det vil inkludere prisene i løpet av de siste 50 dagene. Det resulterende gjennomsnittet under (11) tar hensyn til de siste 10 datapunktene for å gi handelsmenn en ide om hvordan en eiendel er priset i forhold til de siste 10 dagene. Kanskje du lurer på hvorfor tekniske handelsfolk kaller dette verktøyet et bevegelige gjennomsnitt og ikke bare en vanlig gjennomsnitt. Svaret er at når nye verdier blir tilgjengelige, må de eldste datapunktene slippes fra settet og nye datapunkter må komme inn for å erstatte dem. Dermed går datasettet kontinuerlig til å regne for nye data etter hvert som det blir tilgjengelig. Denne beregningsmetoden sikrer at bare den nåværende informasjonen blir regnskapsført. I figur 2 flyttes den røde boksen (som representerer de siste 10 datapunktene) til høyre, og den siste verdien av 15 blir tapt fra beregningen når den nye verdien av 5 er lagt til settet. Fordi den relativt små verdien av 5 erstatter den høye verdien på 15, ville du forvente å se gjennomsnittet av datasettets reduksjon, som det gjør, i dette tilfellet fra 11 til 10. Hva ser Moving Averages Like Når verdiene til MA har blitt beregnet, de er plottet på et diagram og deretter koblet til for å skape en bevegelig gjennomsnittslinje. Disse svingete linjene er vanlige på diagrammer av tekniske handelsfolk, men hvordan de brukes kan variere drastisk (mer om dette senere). Som du kan se i figur 3, er det mulig å legge til mer enn ett glidende gjennomsnitt i et diagram ved å justere antall tidsperioder som brukes i beregningen. Disse svingete linjene kan virke distraherende eller forvirrende i begynnelsen, men du vil bli vant til dem når tiden går videre. Den røde linjen er bare gjennomsnittsprisen de siste 50 dagene, mens den blå linjen er gjennomsnittsprisen de siste 100 dagene. Nå som du forstår hva et glidende gjennomsnitt er, og hvordan det ser ut, kan du godt presentere en annen type glidende gjennomsnitt og undersøke hvordan det er forskjellig fra det tidligere nevnte enkle glidende gjennomsnittet. Det enkle glidende gjennomsnittet er ekstremt populært blant handelsfolk, men som alle tekniske indikatorer har det kritikere. Mange individer hevder at bruken av SMA er begrenset fordi hvert punkt i dataserien vektes det samme, uavhengig av hvor det forekommer i sekvensen. Kritikere hevder at de nyeste dataene er mer signifikante enn de eldre dataene, og bør ha større innflytelse på sluttresultatet. Som svar på denne kritikken begynte handelsmenn å gi mer vekt på nyere data, som siden har ført til oppfinnelsen av ulike typer nye gjennomsnitt, hvorav den mest populære er det eksponentielle glidende gjennomsnittet (EMA). (For videre lesing, se Grunnleggende om vektede bevegelige gjennomsnitt og hva som er forskjellen mellom en SMA og en EMA) Eksponentiell flytende gjennomsnitt Det eksponentielle glidende gjennomsnittet er en type bevegelige gjennomsnitt som gir mer vekt til de siste prisene i et forsøk på å gjøre det mer responsivt til ny informasjon. Å lære den noe kompliserte ligningen for å beregne en EMA kan være unødvendig for mange forhandlere, siden nesten alle kartleggingspakker gjør beregningene for deg. Men for deg matematiske geeks der ute, her er EMA-ligningen: Når du bruker formelen til å beregne det første punktet til EMA, kan det hende du merker at det ikke er noen verdi tilgjengelig for bruk som den forrige EMA. Dette lille problemet kan løses ved å starte beregningen med et enkelt glidende gjennomsnitt og fortsette videre med den ovennevnte formelen derfra. Vi har gitt deg et eksempelkart som inneholder virkelige eksempler på hvordan du kan beregne både et enkelt glidende gjennomsnitt og et eksponentielt glidende gjennomsnitt. Forskjellen mellom EMA og SMA Nå som du har en bedre forståelse av hvordan SMA og EMA beregnes, kan vi se på hvordan disse gjennomsnittene er forskjellige. Ved å se på beregningen av EMA, vil du legge merke til at det legges større vekt på de siste datapunktene, noe som gjør det til en type vektet gjennomsnitt. I figur 5 er antall tidsperioder som brukes i hvert gjennomsnitt identisk (15), men EMA reagerer raskere på de endrede prisene. Legg merke til hvordan EMA har en høyere verdi når prisen stiger, og faller raskere enn SMA når prisen senker. Denne responsen er den viktigste grunnen til at mange handelsmenn foretrekker å bruke EMA over SMA. Hva betyr de forskjellige dagene Gjennomsnittlig flytteverdi er en helt tilpassbar indikator, noe som betyr at brukeren fritt kan velge hvilken tidsramme de vil ha når man lager gjennomsnittet. De vanligste tidsperioder som brukes i bevegelige gjennomsnitt er 15, 20, 30, 50, 100 og 200 dager. Jo kortere tidsrammen som brukes til å skape gjennomsnittet, jo mer følsomt blir det for prisendringer. Jo lengre tidsrom, jo mindre følsomt, eller mer utjevnet, vil gjennomsnittet være. Det er ingen riktig tidsramme som skal brukes når du oppretter dine bevegelige gjennomsnitt. Den beste måten å finne ut hvilken som passer best for deg, er å eksperimentere med en rekke forskjellige tidsperioder til du finner en som passer til din strategi. Flytte gjennomsnitt: Slik bruker du dem
No comments:
Post a Comment